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As is well known in statistical physics, the stationary distribution can be 
obtained by maximizing entropy. We show how one can reconstruct the formula 
for entropy knowing the formula for the stationary distribution. A general case 
is discussed and some concrete physical examples are considered. 
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1. INTRODUCTION 

In this paper we distinguish entropy from other functionals of distribution 
functions. We show for a very general case that the entropy functional is 
the unique functional that is maximized by the corresponding stationary 
distribution function under constraints given by the invariants of the 
associated kinetic equations. This means we prove a generalization of the 
so-called dual to Gibbs' lemma/61 As we will see, the unique reconstruction 
of entropy is only possible if the dimension of the space of invariants is 
greater than one. 

The physical examples we discuss are Maxwell, Bose-Einstein, and 
Fermi-Dirac distributions and constraints given by the invariants of the 
Boltzmann, respectively Uehling-Uhlenbeck, equations; compare, e.g., 
Balescu. Ill A counterexample with only one collision invariant is given by 
the equations of neutron transport/4~ Our theorem is closely connected to 
the uniqueness of entropy as the only increasing functional of the 
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Boltzmann equation; see McKean t6~ for the Kac model of the Boltzmann 
equation and Waldmann ~91 and Vedenyapin tSI for the case of the full 
Boitzmann equation. 

The question is also becoming of interest in another context: In many 
papers "spurious invariants" arise for discrete models of the Boltzmann 
equation and for lattice gases, t3''-~ The following theorems deal with 
analogs of "spurious decreasing functionals" in a very general case. 

2. INVARIANTS,  STATIONARY DISTRIBUTIONS,  AND THE 
INVERTING F O R M U L A  

Before stating our  main result we introduce some notations. Let 
~0,(v) ..... ~ON(V) be continuous functions on R k, the invariants. 

The mapping S: R ~ (a, b)___ R § is assumed to be differentiable with 
S ' > 0 .  We call ,4 fstat(t)):=S((A,~o(o))) with q~=(~o~ ..... q~N) and 
A = (A, ..... AN) e R N the stationary distribution. Here ( . ,  �9 ) denotes the 
scalar product  in R N. 

Example. Let N =  5, k = 3, ~o~= v~, i =  1, 2, 3, ~o4 = Ivl 2, q~5 = 1. With 
S ( x )  = exp(x) [1 + O exp(x)]  -~ we get for O = 0 the Maxwell distribution, 
for O- -  - 1  the Bose-Einstein distribution, and for O = 1 the Fermi-Dirac  
distribution. 

Consider the mapping ~b(v, u): ~k x (a, b) ~ R. Let ~b(v, u), ~b~(v, u), and 
~bu,,(v, u) be continuous with respect to (v, u). Moreover,  the function 
q~(v, f ~ , , ( v ) )  is assumed to be integrable for every A E R u. Denote by Mz~a, 

the set of continuous functions coinciding with f~at(V) outside some ball, 
that is, 

Mf~a ' = { g ~ cg(Rk) I a < g(v)  < b for all v e R k and for some 

R = R ( g )  > 0 there holds g(v) = fA~t(V) for every Iv[ > R} 

We are concerned with the uniqueness of functionals of the form 
G(g)  = S q~(v, g (v) )  dr. The functional G is said to attain a maximum for the 
stationary distribution fsAt~ , if VA e R N and for all g ~ Mr~a, such that 

I A [fst~t(v) -- g(v)]  (Pi(V) dv = O, i=  1 ..... N (2.1) 

there holds 

,4 
G ( f  stat ) >t G ( g )  
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Condi t ion  A. We assume that  ~p~ ..... ~0N are linear independent 
functions and for any v ~ R  k there is an i=i(v)~ {1 ..... N} s.t. 

~p,(v) 4:0 (2.2) 

Our  main result is stated as follows. 

Theorem 2.1. Suppose that  Condit ion A holds and the number  N 
of linear independent invariants is not less than 2. If G ( g ) = S  ~b(v, g(v))dv 
attains a max imum for all f~a t ,  A ~ R N, then there exists b ~< 0 and c ~ R N 
s . t .  

0--~ (v, u) = bS-'(u) + (c, tp(v) ) (2.3) 0u 

Theorem 2.2. In contrast,  suppose that  Condit ion A holds and 
that the space of collision invariants has dimension N - - 1 .  Then for all 
functions ~(v, u) for which Oq)/tgu has the form 

O--~ (v,u)=~o,ivl~(s-'lul) 
Ou \ ~,(v) ) 

the functional G(g)=So~(v, g(v))dv attains a max imum for all fstat'4, 
A ~ R u. Here q is an arbi t rary monotone  decreasing function. This means 
that in this case there is no uniqueness of the functional G(g). 

Proof of Theorem 2. I. We consider the case of two linear independent 
invariants, tp = (~p~, (02), N =  2. In the general case N>~ 2 the proof  is quite 
similar. We proceed in several single steps: 

Step 1. The necessary condition for the conditional ext remum is 
that there exist Lagrange multipliers 2 i 6 R, i = 1, 2, s.t. 

[ ' }  i ,lv) h(vld =O 
i=1 

where ~(v, u ) =  ~b,,(v, u) and h(v)is arbitrary.  
With 2(A) = (2,(A), 22(A)) E R 2, where A = (A j, A 2) ~ R2, the above 

yields 

r  (2(A),  ~p(v)) (2.4) 

Step 2. Here we show that for any V o ~ k  one can find v ~ , v 2 a R  k 
and ~t,, ct2eR with a, #0~-~z2, s.t. the vectors q~(v~) and tp(v2) are linear 
independent and 

~O(Vo) = ~, q~(v, ) + ~zq~(v2) (2.5) 
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First we prove the auxiliary statement that the span L of the set 
{xeR21x=~o(v),veR k} coincides with R2: It is obvious that the 
dimension of L is 1 ~< dim L ~< 2. Suppose dim L = 1. Then there would 
exist Woe R k and a function c(v): R k ~ ~ s.t. ~0(v)= c(v) ~0(Wo), Vve R ~, 
with q~(Wo):~0. Choose ~t~, ct_,e~ such that I~1 + Ic~=l ~ 0  and 
~t,q~(wo) +ct2~o2(Wo) =0 .  We get 

0~ 1 ~0 I(D) "{- 0~2 (P2(V) = C(V)['0( I (/0 l (W0)  -{- ~2 ~O2(W0)] = 0 

This contradicts the linear independence of ~0, and q~2 and proves 
dim L = 2. 

The statement of Step 2 can be shown in the following way: We take 
Voe R k arbitrary and find v, e R ~ s.t. the vectors ~O(Vo) and r are linear 
independent. This is possible because dim L = 2. It is sufficient to show that 
there exists v2 e R ~ s.t. 

[3~P(Vo)~o(v~)~7~o(v,) Vfl, y e R  (2.6) 

Consider the sets T i =  {ve~k]cp(v)=ucp(vi) for some ~ e ~ } ,  i=O, 1. The 
sets Ti, i = 0, 1 are closed. Using the linear independence of q~(Vo) and r 
and (2.2}, we get Toc~T,=(2J. Therefore there exists v 2 e R  k s.t. 
v2 r To w T~. This yields (2.6). 

Step 3. We take an 
cq ,c t2eR satisfying (2.5) as 
~b~, i =  O, 1, 2, by 

r = r  S(u) )  

we show in this step that the following identity is true: 

O~l~Yl(Zi)-lt-ot2~t2(Z2)~-~lO(O~lZi q-O~2Z2), VzI,7.2e~ 

Using (2.4), we get 'CA e R 2 

~, r ,( ( A, ~o(v,)))+ ~. r ( A, ~o(v2) ))  

= a,~b(Vl, S((A, r + c~2~b(v 2, S((A, r 

= ~ (;t(A), q~(v~ ) )  + ~2(;-(A ), ~o(v2)) 

= (;JA), ~O(Vo)) 

= r o, S((A, rP(Vo)))) 

= r ~O(Vo))) 

= qJo(~, (A, ~o(v,))+ ~2(A, ~o(v2))) 

arbitrary VoeR k and find Vl,O2eR k and 
proven in Step 2. Introducing the functions 

(2.7) 
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This yields already (2.7), as can be seen by the following argument:  
Because the vectors ~o(v,) and ~o(v2) are linear independent,  the vector 
(z,,  z2) with components  z, = (A,  ~o(vl)> and z2 = (A,  r takes all 
values in R 2, while A takes all values in •2. 

S tep  4. We show that the function dg(v, S(u)) has the form 

~ ( v , S ( u ) ) = c t ( v ) u + c 2 ( v ) ,  V v e R  k anda l l  u ~ R  (2.8) 

c,(v) and c2(v) are some continuous functions on R ~. 
Setting first z, = 0 ,  then z,_ = 0, and finally z, = z 2 = 0  in (2.7), we get 

the identities 

r = ~_, ~'2(z2) + ~1 ~,(0),  V z 2 e ~  

q/o(~,z,) = ~1 ~ , (z , )  + ~ r  Vz, e ~  

q,o(0) = ~1 ~ 1(0) + ~2 ~,2(0) 

Adding these equalities and using (2.7), we obtain a functional equat ion for 
~b o, namely 

~JO(O~IZ2)"F~IO(O~2Z2)--~Io(O)=~Jo(O~IZI"FO~2Z2) , VZI, Z 2 ~  (2.9) 

Define r/(u) = ~Oo(U) - ~o(0). Then (2.9) implies ~/(u + u') = r/(u) + q(u') Vu, 
u ' � 9  R. It follows that  q(u) is a linear function. This means that  q/o(U)= 
~O(Vo, S(u)) has the form 

Co(U) = r S(u) ) = cl u + c2 (2.10) 

where cl and c2 are some constants. Since VoeR* has been chosen 
arbitrary,  we deduce from (2.10) 

qJ(v,S(u))=c,(v)u+c2(v), V v e R  ~, u e R  

The continuity of the functions c, and c2 follows from the continuity of ~b 
and S. 

S tep  5. We prove that  c2(v) has the form 

cdv) = <c, ~0(v)> 

where c =  (cl,  c2)e  R 2 is some vector. 
Substituting u = ( A , ~ o ( v ) )  in (2.8) and taking (2.4) into account  

yields Vv e R k, VA �9 ~2 

(2(A),  (p(v) > = r f~Aa,(V)) 

= r s ( ( x ,  r  

= cl(v)<A, ~o(v) ) + c2(v) 
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This gives 

(2(A),  ~o(v)) = cl(v)(A, ~o(v) ) + c2(v) (2.11) 

Setting A = ( 0 , 0 ) ,  we find cz(v)=(c, qg(v)) with Vv e R k, A e R 2. 
c = 2 ( ( 0 , 0 ) ) e R  2. 

Step 6. We prove c~(v)-b, where b is a constant. Using the result 
of Step5 in (2.11), we get 

((,~(A) - c), ~o(v) ) = c, ( v ) (A ,  ~o(v) ),  

Consider the sets 

VveR k, VAeR  2 (2.12) 

Uo = {v I q,l(v) 4:0 4: ~o_,(v)} 

Ul = {vl~ol(v)=O, ~o2(v) r 0} 

U2 = {v I ~o~(v) 4: 0, ~o2(v) = 0} 

Because of Condition A we have Uo w U, w U2 = R*. Setting A = (1, 1 ) in 
(2.12), we have 

c1(v)=22((1, 1 ) ) -  c2, VveUl (2.13) 

c,(v) = 21((1, 1 ) ) - c l ,  Vv~U2 (2.14) 

Let v be in Uo. Setting A = ( 1 , 0 ) i n  (2.12), we get 

cl(v)=o~l + ot2f(v), Vve Uo (2.15) 

with c~, = 2,((1, 0 ) ) - c j ,  c~ 2 =22((1,  0))-c2,  and f ( v ) =  ~o2(v)/~o,(v). 
Setting A = (0, 1) in (2.12), we get 

cl(v)=~lf-~)+~2, VveU o (2.16) 

with flj =21((0,  1 ) ) - c , ,  fl2=22((0, 1 ) ) - c 2 .  
Equating the right parts of (2.15) and (2.16), we derive that f(v) 

satisfies 

a2 f2 ( v )+(a l - f l z ) f ( v ) -~ t=O VvEUo 

H e n c e f ( v )  is constant on Uo. 
Equations (2.13)-(2.15) to gether with the continuity of ct(v) yield the 

statement of this step. 
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Step 7. In Steps 4-6 we have shown 

~(v, u)= bS-I(u) + ( c, r ) (2.17) 

What is left for the last step is to show b ~< O: We consider the difference 

G(g) - G(f,Atat) = I [(b(v, g (v ) ) -  (b(v, fsAtat(V))] dv 

= ~(v , f~t (v))[g(v  ) .4 - f , t , t (v)]  dv 

+ 2 ~u (v, r f ~,,(v)))[g(v)- f st.,(v)]- dv (2.18) 

The first integral in the right side vanishes because of (2.1) and (2.4}. With 
(2.17) the second one has the form 

f [ g ( v ) -  f;',~,(v)] 2 b S'(S-'(~(g(v), f ~.t(v)))) dv 

Since G(g)<~ G(f ~a ,) we have 

, [g(v)--fs~at(V)']2 
b dv~O 

J s 

Because S' was assumed to be positive, b ~ 0  follows. The proof of 
Theorem 2.1 is complete. �9 

Proof of Theorem 2.2. Substitutef~,,(v) in (2.18) and use ~(v, u )=  
q~(v} t/iS-t(u}/q~j(v)), where r/ is monotone decreasing. We get 

G ( g ) -  G(f~, , )= f q~,(v)q(A )[g(v)--f~at(V)] dv 

+ ~ f tf (S- ' (~(g(v) ,  _fsAtat(U))!) 
\ ~,(v) ] 

A [g(v) -- f,tat(v)]" 
• dv 

S ' (S-  l(~(g(v), f~at(v)))) 

Again the first term on the right vanishes for all g (v) satisfying (2,1). The 
second term is nonpositive because of r/' ~< 0 and S' > 0. 

Hence the functional G attains a maximum for A fstat(V) and the proof 
is complete. �9 
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Remark. We show here that Condit ion A, especially (2.2), is essen- 
tial for the proof  of Theorem 2.1., namely that it cannot be replaced by the 
weaker one 

r for almost all v~l/~ k 

We consider the following example: Choose cp,(v), Cpz(V), v e R s.t. 

~o,(v)~O~q~z(V), W e 0  

~o~(0) = 0 = ~2(0) 

~o~(v)= cp2(v), V v > 0  

~ol(v) = 2r V v < 0  

We show that the functional G(g)=S r g(v))dv attains a maximum for 

A fstat(V) = S(A l q)l (v) -k- A2~oz(v)) 

not only in the case when Or has the form (2.3), but also when 

0 v>~0 

~ ou ( s-,(% 
~0,(v) rt \ q0,(v) ] v < 0  

where q is an arbitrary monotone  decreasing function s.t. ~b, r  and ~buu are 
continuous. Using (2.18), we get 

- G(f~at)  = f ~(v, f,Atat(v))[g(v ) - fsAta,(V)] G(g) dv 

l fOr +~ - fstat(v)] dv ~_ffu (V, ~(g(v), f ~a,(V)))[g(v ) A 2 

For all g satisfying (2.1) the first integral vanishes. This is true since 

~b(v,f~at(V))=()t(A),q~(v) ), V v e R ,  A e R  2 

with 2(A) = (2~(A), 22(A)) and 

2 , ( A ) = - 2 2 ( A ) = 2 r / ( A , + ~ - ~  2) 
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The second integral is nonpositive because {0( 
- - ~ - - .  1 A 
c3u r/' S -  (~(g(v),fstat(v)))~ 1 

-~ -~  -1 S,(_,(~(g(v),f~at(V)) ) v < 0  

is nonpositive. This proves that G attains a maximum for f~tat for all func- 
tionals G of the above form, not only for those fulfilling (2.3}. 

3. E X A M P L E S  

The main examples are the equations of Boltzmann and Uehling- 
Uhlenbeck. The collision invariants are the ones in the example at the 
beginning of Section 2. Corresponding to the existence of five conservation 
laws of mass, momentum, and energy, we have 

N = 5  and q~i=vi, i = 1 , 2 , 3 ,  ~04=[vl 2, r v e R  3 

The stationary distributions are 

A f stat,o(V) = Se( ( A, q~(v) }) 

with A e •5 and S~ exp(x)[ l  + O exp(x) ] - l ,  where O = 0  stands for 
Maxwell, - 1  for Bose-Einstein, and 1 for the Ferrni-Dirac distribution. 
The usual form of these distributions is obtained by setting 

ui l 
A i = ~ ,  i = 1 , 2 , 3 ,  A a = - - -  

2T 

with p, T e A  + , u e N  3. For O =  -1 ,  i.e., the Bose-Einstein case, p and T 
have to be restricted further by p < (2roT) 3/2. With Theorem 2.1 we get the 
following result. 

Proposition 3.1. If the functional G(g)= S (~(v, g(v)) dv attains a 
maximum for the stationary distributions flp.,,.r) with p, u, T as above, stat, O 

then 
r g)=b[gln g + O ( l  - Og) ln(l -Og)]  

+ ~ c:~+c41vl2+c5 g 
i = l  

+ d(v) 

Here b ~< 0, c e R 5 is a constant vector, and d is an arbitrary function of v. 

822/77/5-6-6 
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This means that the functionals are, up to multiplication with collision 
invariants, the quantum mechanical entropies. 

An example with only one collision invariant is given by the neutron 
transport equation, a linear Boltzmann equation. Here v is restricted to a 
ball or sphere B_~R 3. There is only one collision invariant, ~o=~o, = 1. 
This corresponds to the existence of just one conservation law, the conser- 
vation of mass. The stationary distribution is given by setting S =  Id, i.e., 

P +. fstat=P, p~R According to Theorem2.2, the functional G ( g ) =  
Se r g (v ) )dv  attains a maximum for all f~'tat, P e R +, if r has the form 

(s-'lul  
r u) = q~(v) • \ ~ / =  ,(u) 

where r/is an arbitrary monotone decreasing function. In other words: Any 
functional G ( g ) = S s r  g(v))dv with a concave function ~b(v, u ) = r  
attains a maximum forf~,a,(V)= p, v e B, under the constraint 

~ n [ p -  g(v)] dv=O 

We remark that this is nothing but a restatement of Jensen's inequality. 
Other examples are given by analogs of the theorem proved above for 

discrete-velocity models and lattice gases. For instance, for the Carleman 
model we are in the situation of Theorem 2.2, but for the Broadwell model 
in that of Theorem 2.1. This means that for the Carleman model "spurious 
decreasing functionals" exist, tS~ The general theory of "spurious decreasing 
functionals" and "spurious invariants" for discrete models and lattice gases 
will be published. 
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